Network anomaly detection for railway critical infrastructure based on autoregressive fractional integrated moving average
نویسندگان
چکیده
The article proposes a novel two-stage network traffic anomaly detection method for the railway transportation critical infrastructure monitored using wireless sensor networks (WSN). The first step of the proposed solution is to find and eliminate any outlying observations in the analyzed parameters of the WSN traffic using a simple and fast one-dimensional quartile criterion. In the second step, the remaining data is used to estimate autoregressive fractional integrated moving average (ARFIMA) statistical models describing variability of the tested WSN parameters. The paper also introduces an effective method for the ARFIMA model parameters estimation and identification using Haslett and Raftery estimator and Hyndman and Khandakar technique. The choice of the “economically” parameterized form of the model was based on the compromise between the conciseness of representation and the estimation of the error size. To detect anomalous behavior, i.e., a potential network attack, the proposed detection method uses statistical relations between the estimated traffic model and its actual variability. The obtained experimental results prove the effectiveness of the presented approach and aptness of selection of the statistical models.
منابع مشابه
A practical approach to forecast Quality of Service parameters considering outliers
Autoregressive integrated moving average (ARIMA) models are used in different researches for modelling and forecasting of traffic and Quality of Service (QoS) parameter values in telecommunication networks to make reasonable short, mediumand long-term predictions. We propose methodology to use ARIMA models for QoS prediction in network scenarios based on a preliminary detection and elimination ...
متن کاملMoving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملAnomaly Detection in Time Series of Graphs using ARMA Processes
There are many situations in which indicators of changes or anomalies in communication networks can be helpful, e.g. in the identification of faults. A dynamic communication network is characterised as a series of graphs with vertices representing IP addresses and edges representing information exchange between these entities weighted by packets sent. Ten graph distance metrics are used to crea...
متن کاملAn Overview of Fractional Order Signal Processing (fosp) Techniques
This paper presents a brief overview of some existing fractional order signal processing (FOSP) techniques where the developments in the mathematical communities are introduced; relationship between the fractional operator and long-range dependence is demonstrated, and fundamental properties of each technique and some of its applications are summarized. Specifically, we presented a tutorial on ...
متن کاملFuzzy Temporal Logic Based Railway Passenger Flow Forecast Model
Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016